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Abstract 

 
A different approach to parallel FFT 

implementation is described here based on a new 
matrix formulation of the discreet Fourier transform 
(DFT) which decomposes it into structured sets of 
multiplication-free 4-point DFTs.  As a result, (1) 
implementations are simple, locally connected and 
structured, thereby allowing lower power and higher 
performance mappings to modern FPGAs and ASICs;  
(2) significant added functionality and flexibility 
accrues from the inherent scalability; and (3) good 
arithmetic efficiency is retained. These benefits would 
be best suited to wireless devices where future 4G 
protocols will utilize the FFT-based digital modulation 
schemes orthogonal frequency division multiplexing 
(OFDM) and scalable orthogonal frequency division 
multiple access (OFDMA).  
 
1. Introduction 
 

The DFT is of central importance to a large variety 
of signal processing applications:  telecommunications, 
radar (synthetic aperture radar, pulse compression, 
range-Doppler imaging), antenna arrays (frequency 
domain beamforming), navigation (GPS), speech 
processing (speech recognition/synthesis), image 
processing (digital still/video/cell-phone cameras, high-
definition television, video surveillance systems, 
industrial inspection systems, medical imaging 
devices), and sonar (LOFARgram) [1][2]. 

Here the application focus is communications, 
where the FFT is rapidly gaining acceptance for use in 
wireless devices via the specification of OFDM and 
OFDMA modulation in future standards, e.g., 802.11n 
(next generation wireless LAN), 802.16/e (wireless 
fixed and mobile metropolitan area networks-WiMax ), 
802.20 (mobile broadband wireless access), 802.22 
(wireless regional area networks), Flash-OFDM (Fast 
Low-latency Access with Seamless Handoff OFDM), 
3GPP LTE (3rd Generation Partnership Project, Long 
Term Evolution), and HiperMAN (European 
broadband fixed wireless) [3][4][6][7]. 

Future OFDM-based protocols require flexibility in 
choosing the number of sub-carriers.  Here a traditional 
FFT suffers a power-of-two limitation that severely 
restricts the number of attainable points and leads to a 
highly non-uniform distribution.  More control in the 
choice of transform sizes can benefit overall system 
performance as in the recently announced Chinese 
Digital Multimedia Broadcasting Terrestrial/Handheld 
standard (DMB-T/H) which uses OFDM based on 
3780 sub-carriers rather than the power-of-two value 
4096 [5].  Non-power-of-two transform sizes also have 
been proposed in new wireless protocols mentioned 
above that use OFDMA  as in 802.22 (1024, 2048, 
4096, 6144 points) [6] and 3GPP LTE (128, 256, 
1024, 1536, 2048 points) [7].   

Also, 4G OFDM-based protocols will demand very 
high throughputs due to requirements for higher 
bandwidths and multiple data streams associated with 
multiple-input-multiple-output (MIMO) antennas.  
Example estimates indicate a need for throughputs of 
~10µsec per 1024-point FFT per OFDM stream [8].  
With ≥4 streams [9], computation times less than 
2.5µsec/1K FFT would then be necessary.  High 
dynamic ranges of 60-100db [10] could be needed as 
well. 

Therefore, to meet the signal processing 
requirements of future wireless systems a parallel FFT 
architecture is desired that 

 
• doesn't restrict the DFT size N to be either 

powers of a radix or factorable into relatively 
prime numbers 

• scales in a simple way to match required system 
performance 

• provides run-time transform size options 
• offers high dynamic range for a given word 

length 
• is ideally suited to today's FPGA and ASIC 

hardware 
• provides low latency as well has high throughput 
• accommodates 2-D as well as 1-D DFTs 
• uses minimal power 
• possesses all the locality, regularity and design 

simplicity of systolic designs 
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In this paper a novel high-performance, scalable 

FFT circuit architecture is described which provides 
this level of generality. Its algorithmic underpinnings 
are derived from a decimation in time and frequency of 
the DFT which leads to a much simpler matrix based 
formulation of the DFT [11]. It combines the 
performance associated with the use of radix-4 
butterflies in traditional FFTs with the generality and 
design/implementation simplicity of systolic arrays. 

In Section 2 previous work on FFT implementations 
is summarized.  Section 3 derives the proposed “base-
4” architecture, Section 4 provides details on an 
example FPGA-based implementation, followed in 
Section 5 by a conclusion. 

 
2. Related work 
 

Past systolic array designs that have been proposed 
for computation of the DFT typically offer very high 
performance in terms of throughput and transform sizes 
aren’t limited to powers of 2. However, they are 
inherently inefficient and require substantial hardware. 
Approaches using linear arrays have been based on 
direct algorithm implementations so that the number of 
(complex) multiplies per DFT is O(N2) and the 
throughput is O(N) arithmetic cycles per DFT. A 2-D 
systolic array can improve efficiency when N can be 
expressed as the product of two cofactors so that a 
“row/column” DFT computation method can be used 
[15].  If this is done, the throughput becomes ( )O n  for 
an N-point 1-D DFT where 2N n= , and the number of 
multiplies is reduced to 3( )O n .  For both 1-D and 2-D 
systolic arrays the number of (complex) multipliers 
required is N, so that for a 1024-point transform a 
prohibitive number of multipliers (1024) would be 
necessary. 

Most parallel 1-D FFT designs have appeared in the 
form of direct or modified implementations of 
decimation-in-time or frequency flow graphs with   

(log )rO N  stages of computation, where r is the radix.  
( )O N  delay registers are used to match the outputs and 

inputs of the different stages. These “pipelined” FFTs 
are computationally efficient and make effective use of 
hardware, particularly multipliers.  However, these 
designs have disadvantages because for optimal 
designs often each butterfly, delay/commutator, and 
twiddle factor ROM has a different circuit design 
and/or its operation varies from stage to stage. Also, 
the multipliers do not always work at 100% efficiency, 
the designs are limited to transform lengths that are 
powers of 2 or 4, they are architecturally suited only 

for a 1-D DFT or 2-D DFT but not both, and it is 
difficult to build scalable designs because of their 
irregularity and larger granularity.  Finally, the latency 
(number of clock cycles to do the first DFT in a series) 
is high because of the deep  pipeline depths used.  A 
good summary of these designs can be found in [16].  
Some effort has been devoted to building systolic 
pipelined versions of these designs to improve circuit 
modularity and uniformity, many of which are 
summarized in [17]; however, there have been no 
demonstrations of improved performance. 

The FFT design described here is intended to 
provide a performance level better than that of 
traditional pipelined FFTs, yet maintain the 
design/implementation simplicity and functionality of 
systolic arrays, e.g., the capability to perform non-
power-of-two DFT computations.  An additional 
motivation is that new FPGA hardware changes 
previously established design tradeoffs.  For example, 
recent FPGA chips are offered with large numbers of 
hardwired multipliers (704 18-bit multipliers in 
Altera’s Stratix III EP3SE260) which consume less 
than 10% of the overall floor-plan area.  So rather than 
minimizing use of multipliers, many times it is a better 
strategy to use as many as desirable lest they be wasted. 

 
3. Background 
 
3.1. Algorithmic foundation of “base-4” 
architecture 
 

Here, the derivation of the new matrix equation for 
the DFT is summarized.  (More details can be found in 
[11] and an alternate approach appears in [18].)  The 
derivations begins with the direct form DFT 
representation  

1

0
( ) ( )

M
nk

M
n

Z k W X n
−

=
= ∑  (1) 

where M is the transform length, X(n) are the time 
domain input values, Z(k) are the frequency domain 

outputs and (2 / )I M
MW e π−= . In matrix terms (1) may 

be represented as 

Z CX=  (2)
where C is a coefficient matrix containing elements 

nk
MW .  If M can be factored as 1 2M N N= , then 

applying the reindexings 1 1 2= +n n N n  and 

1 1 2= +k k N k  with  1 10,1,..., 1n N= − , 

1 10,1,..., 1k N= − , 2 20,1,..., 1n N= − , 
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2 20,1, , 1= −k N , it can be shown that if 1 2/N N  is an 
integer value (1) becomes 

1

2

b M

M

b b
t

b b

Y W C X

Z C Y

= •= •= •= •

====
 (3) 

where Wb is an 1 1xN N matrix with elements 
1 1

1 1[ , ] n k
b MW k n W= , CM1 is an 1 2xN N  coefficient matrix 

with elements 2 1

21 1 2[ , ]= n k
M NC k n W , Xb is an 

2 1xN N matrix with elements 2 1 1 1 2[ , ] ( )= +bX n n X n N n , 

bY is a 1 1xN N  matrix, CM2 is an 2 1xN N  coefficient 
matrix with elements 1 2

22 2 1[ , ]= n k
M NC k n W , Zb is an 

2 1xN N  matrix containing the transform outputs 

2 1 1 2 1[ , ] ( )= +bZ k k Z k k N , “• ” indicates element-by-
element multiplication and t denotes matrix 
transposition.  In (3) CM1 and CM2 contain 2

2/M N sub-

matrices 
21 2| | ... |

t

B NC c c c    ====      with the form 

1 | | ...
tt t

M B BC C C    ====       and [[[[ ]]]]2 | | ...M B BC C C====  due to the 

periodicity of
2NW , and ci are constant vectors.   

The “base” b for the architecture corresponds to the 
value of N2 that is chosen in the reindexed formulation 
(3).   Here, N2=4 (“base-4” ) has been chosen because 
it represents a good tradeoff between circuit 
performance and circuit complexity.  This selection 
results in 

 

1 2 3 4

1 1 1 1
1 1, , ,1 1 1 1
1 1
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 and  

1 1 1 1
1 1
1 1 1 1
1 1

B

I I
C

I I

 
 − − =
 − −
 − − 

, 

 
where BC  above is the coefficient matrix for a 4-point 
DFT and also describes a radix-4 decimation in time 
butterfly. Consequently, in (3) the matrix 
multiplications by CM1 and  CM2 represent repeated use 
of a radix-4 butterfly. 

 The reindexed direct form expression (3) leads to 
several novel computational features, compared to 
previous systolic implementations, that are exploited in 
realizing a base-4 circuit architecture: 

 

1) Since it has been assumed that N2=4 and that 
1 2/N N m= , where m is an integer, it follows that 

2
1 2 2 16M N N mN m= = = , e.g., transform sizes  

are only constrained to be integer multiples of 16. 
2) In comparing (3) with (2),  significant 

computational advantages of the reindexed form 
(3) can be seen.  In (3) the matrix products 1M bC X  

and 2
t

M bC Y  involve only addition/subtraction 
because the elements of  1MC and 2MC contain 
only 1±±±±  or imaginary numbers ±I, whereas the 
product CX in (2) requires complex 
multiplications.   

3) The size of the coefficient matrix bW  in (3) is 
( / 4) ( / 4)M M××××  vs. the M M×××× size of C in (2), 
leading to a reduction in the number of overall 
multiplications by x16 compared to (2).   

4) Systolic implementations that involve flows of 
coefficient data throughout the structure benefit 
because the elements, 1[ , ]MC i j  and 2[ , ]MC i j do not 
impose significant bandwidth requirements (full 
complex numbers are not used). 
 

3.2. Base-4 architecture 
 

The FFT circuit implementation makes use of two 
levels of algorithm factorization.  The first is the well-
known row/column factorization, N=Nr Nc,, where N is 
the desired transform length and Nc and Nr are the 
number of columns/rows.  This approach requires three 
basic steps: 
 
1) Compute successively Nc column DFTs of length Nr 

on column inputs Xci, i=1.. Nc, where the 
computational flow is as shown in Fig. 1. The 
column results Zci,i=1..Nc, are stored Nc values per 
processing element (PE) in small right hand side 
(RHS) PE memories (Fig. 2).    

2) Multiply the Zci by the twiddle factors ,n k
NW  by 

moving the Zci values in systolic fashion from the 
RHS array  through a linear multiplier array to the 
LHS array.  These results are stored Nc values  per 
PE in small left hand side (LHS) memories and 
become the row inputs Xri for the last step. (Without 
this step a 2-D DFT is performed.) 

3) Compute successively Nr row DFTs of length Nc on 
row inputs Xri, i=1.. Nr.  These are performed 
logically in the same way as in step 1 using the 
same (Nr/4) x 4 sized arrays and the FFT output is 
Zri,i=1..Nr. 
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In general for the column DFTs, since CM1 is 1 x 4N  
and Xci is 14x N , the matrix product CM1Xci can always 
be computed on an N1 x 4 or (Nr/4) x 4 systolic array of 
PEs (Nr=M=4N1), each containing  nominally two 
registers and an adder [12]. And since CM2 is 14x N and 
Yci

t is N1 x N1,  CM2Yci
t can also be computed on an N1 x 

4 or (Nr/4) x 4 systolic array.  Therefore, the basic 
column DFT architecture is two (Nr/4) x 4 PE arrays, 
with a single Nr/4 PE linear array in between the two to 
do the element-by-element complex multiplies by Wb 
and WN as shown in Fig. 2.  The array is two 
dimensional, but scales with transform size in only one 
dimension (vertically in Fig. 2).  The transpose in 
between row and column DFTs is handled by 
appropriate shifts in CM1, CM2 and  Wb [11].  (This 
architecture was automatically generated by a special 
tool [19][20].) 

In step 3 above the inputs Xri in the matrix multiply 
CM1Xri are supplied internally from within the LHS PE 
memories.  Also, because in general Nc≠Nr, this step 
would require arrays of size (Nc/4) x 4.  Therefore, 
matrix multiplications in step 3 use a different 
computational flow.  Specifically, this to map both the 
CM1Xri and CM2Yri

t matrix multiplies to a single physical 
PE row in the architecture used to do step 1 (Fig. 2).  
This can be done by projecting the (Nc/4) x 4 2-D 
matrix multiplies onto a 1-D linear systolic array 
associated with a physical (step 1) PE row.  The 
number of row DFTs to be performed is Nr, so with 
Nr/4 physical PE rows available, each PE row will 
perform 4 row DFTs. 

The term “base-4 architecture” refers to the array 
structure that supports all three steps above.  It consists 
of the array structure shown in Fig. 2 plus a path for 
RHS to LHS data movement for step 2 and some 
additional control. 

In the column/row factorization it follows that both 
Nc and Nr must be multiples of 16 as noted in the 
previous section.  Then, since N=NrNc, transform 
lengths are restricted to integer multiples of 256. This 
restriction is the result of choosing the base b=4.  
However, if b=2, then a similar analysis would show 
that a base-2 circuit design could perform any 
transform that is an integer multiple of 16.  
Alternatively, if the first level factorization N= Nr Nc is 
not used and b=4,  the direct transform (3) itself can be 
used so that attainable transform values would also be 
integer multiples of 16.  The same architecture supports 
any of these implementation approaches, so there are a 
number of options for matching desired and available 
transform lengths. 

 

 
Fig. 1. Functional operation for column/row 

decomposition 
 

From Fig. 2 it is clear that this architecture is very 
simple in that it avoids the stage-to-stage irregularities 
and the complex permutation networks, commutators 
and butterflies of conventional pipelined FFT 
implementations.  Because each PE is simple and 
interconnections are local, higher clock speeds are 
possible.  Throughputs are also increased because the 
number of clock cycles per DFT is less than the 
transform length N (Table 1).  (For most pipelined 
FFTs the throughput is equal to the transform length N 
in cycles/DFT.) 

 
Table 1.  Base-4 transform length vs. throughput. 

Points Nr Nc Throughput 
(cycles/DFT) 

256 16 16 220 
512 32 16 284 
768 32 24 460 
1024 32 32 668 
1536 48 32 796 
2048 64 32 924 
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Fig. 2. Array design for Nr =M=16 showing PEs and data 
flow during step 1. Here Wri represents row i of matrix 

Wb. (Subscripts “b” not shown for z.) 
 

3.3. Dynamic range extension 
 
For OFDM-based applications high dynamic ranges 

are required for a given word length because high 
peak-to-average signals are generated.  For this reason 
and to avoid the considerable design complexity and 
additional logic associated with fixed word length 
circuits, a unique type of block floating point (BFP) 
circuitry has been added and is briefly described here. 

With the important processing confined locally to a 
row, it is natural to provide separate BFP hardware for 
each PE row as shown in the dashed boxes in Fig. 2.  
Therefore, the base-4 circuit implementation provides 
BFP operations as follows (steps below correspond to 
those in Section 3.2): 

 
Step 1: Each RHS PE stores an exponent associated 

with an element of Zci. 
Step 2: During twiddle multiplication, inputs 

associated with the same row DFT are 
normalized to the same exponent. 

Step 3: Each RHS PE stores an exponent associated 
with an element of Zri. 

 
On output the step 3 exponents are combined with 

the step 2 normalized exponents to produce a single 
exponent associated with each FFT output value.  Thus, 
a BFP operation is performed on row DFT inputs and a 
floating point (FP) operation on each row DFT output.  
Note that for larger transform sizes the number of 
BFP/FP regions increases because the number of 
physical rows is increased. 

 

3.4. 2-D DFTs and long length 1-D DFTs 
 

Larger FFT implementations, specifically 2-D 
arrays and transform sizes from ~8196-points and 
higher, are of less relevance to the wireless 
communications market.  However, many other signal 
processing applications make use of larger transform 
sizes.  One approach to doing this is to use a “third 
level” of factorization.  That is, when either Nr or Nc  is 
equal to or greater than 256, it becomes possible to 
process that column or row as if were a separate 1-D 
FFT.  For example, if Nr = Nc = 256 (64K-point 
transform), then each column i can factored again as Nci  
= nr nc, where nr and  nc are the new row and column 
parameters associated with a single column.  This third 
level factorization preserves the small array size and 
also reduces the relative overall number of 
multiplications and keeps the precision good.  
 
3.5. Partitioning 
 

The scalability of the architecture is also reflected in 
the ease with which FFTs can be partitioned to run on 
fixed hardware so that OFDMA run-time transform 
length options are possible.  This possibility can be 
seen if the DFT expression in (3) is rewritten as 

| | ...
tt t

b b B B bY W C C X    = •= •= •= •      , where Xb is a row or 

column input.  This shows that CB is applied multiple 
times to Xb, computing the same result each time.  
Therefore, it is possible for a single set of four rows to 
compute all necessary elements of Yb and then Zb.   As 
an example, consider a 1024-point transform 
(Nr=Nc=32).  This would nominally use LHR and RHS 
8 x 4 PE arrays.  However, if only four PE rows are 
used, as shown in Fig. 2., then the computation could 
be partitioned, first by calculating from (3)  

 
 

 

11 18

41 48
00

b b
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which provides half the answer, and then doing the 
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same calculation with 1 0 |
tt

M BC C    ====      .  Operationally, 

this could be done by doing step 1 (Section 3.2) twice, 
i.e., stream the input Xb  through the four rows two 
separate times, using different sets of coefficients Wri 
each time.  Then step 2 would take twice as long 
because the array uses 4 rather than the 8 nominal PE 
rows.  Finally, step 3 can be done as before since all 
the row DFT processing is still confined to a single PE 
row. The main difference is that now each physical PE 
row would do eight rather than four row transforms.  In 
this way a simple partitioning scheme is possible, 
whereby any size FFT can be performed on any set or 
sets of four PE rows.  Other finer grain partitioning 
schemes are possible as well.  Also, various options 
and associated tradeoffs with respect to memory usage 
exist as to how to order steps 1-3 during the 
computations. 

An estimate of the approximate number of clock 
cycles per transform can be obtained from multiplying 
the values in Table I by the reduction in hardware used.  
For example, from Table I the base-4 1024-point 
transform in nominal array form (8 x 4 LHS and RHS 
arrays) takes 668 clock cycles.   Using a single four PE 
row slice, as described above, the processing time 
would be ~2 times slower, or ~2x668=1336 cycles. 
 
3.6. Computational performance 
 
3.6.1. Throughput. A throughput estimate can be 
determined from the computation time of the three 
basic operations: column DFTs, twiddle multiplication, 
row DFTs.  There is also a time delay associated with 
the transitions between steps (Section 3.2).  Since the 
combined processing requires Nc column DFTs of 
length Nr  and Nr row DFTS of length Nc , the overall 
throughput Thrpt in cycles per transform can be shown 
to be 
 

2( / 4) 4( 1) / 4c r c c
row DFTscolumn DFTs twiddle multiplication

Thrpt N N N N delay= + + + + . 

 
The row DFT cycle count has a different form than the 
column DFT count because the data movement has 
been rearranged to accommodate the case in step 3 
where Nc ≠Nr [11].  The delay in switching between to 
and from the twiddle step 2 is twice the time to traverse 
the right-left direction of the array or 6 24b = , where 
the multiplier PE is assumed to contain b delay stages.  
Therefore, the approximate throughput becomes 

2/ 4 / 4 4 28 ( / )c cThrpt N N N cycles DFT= + + + . 

The throughput for a variety of FFT calculations using 
this formula are shown in Table 1. 

 
3.6.2. Latency. The latency L is the time it takes to 

do the first FFT in a sequence FFTs.  Consequently, it 
is obtained by adding to the throughput the number of 
cycles necessary to “fill” the pipeline.  From Fig. 2 it 
can be seen that the maximum length data path in the 
array is the time to travel the length (of the array 
( 1 / 4 rN N=  cycles), so that 

rL N Thrpt= + . 

 
4. 256-point FFT circuit example 
 
4.1. Circuit description 
 

To demonstrate this base-4 architecture a 256 
point FFT design that accepts a continuous input 
stream X(n), while generating a continuous output 
stream Z(n) at the same rate (“streaming”) was chosen 
since this mode is common to many signal processing 
applications.  The design has circuit pins for real and 
imaginary inputs/outputs, Z/X, a single global reset, and 
two clocks.   The circuit architecture in terms of PEs 
and multipliers is shown in Fig. 2.  

To achieve a high dynamic range for OFDM 
applications a 16-bit word length was chosen.  A set of 
62 256-point full-scale 16-bit “single tone” transform 
inputs (random phase and random frequency with no 
noise added) showed that the mean signal-to-
quantization-noise ratio was 89.0 db and the mean 
maximum dynamic range (signal power to maximum 
noise value ratio) was 96.3db. 

The design was targeted to an Altera Stratix II 
EP2S15 FPGA (90nm technology).  Altera Quartus II 
tools (v5.1) were used to design and evaluate the FFT 
circuit.  The base-4 circuit operation was verified by 
comparing the Quartus simulator result with a Centar 
bit-accurate simulation model.  The Quartus II timing 
analyzer finds the critical path that determines the 
maximum clock frequencies.  The circuit required 4496 
adaptive logic modules and used 48.9K memory bits.  

The maximum clock speed was 361MHz, which 
corresponds to a throughput of 0.66µsec/FFT.  The 
number of clock cycles/FFT was 240 rather than the 
220 in Table 1 because a simpler control scheme, 
whereby a complete transform was completed before 
starting a new one, was used.  By overlapping the 
start/finish of different transforms, a throughput closer 
to 220 cycles/FFT could be expected.   

Because the base-4 design computes FFTs using a 
number of clock cycles that is less than the transform 
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size, a separate higher speed clock is used to read out 
the data. The I/O clock then runs faster by a ratio of 
256/240 or 385 MHz.  Timing analysis shows that this 
clock can run at speeds up to 399MHz. 
 
4.2. Precision 

 
The base-4 circuit is based on a matrix expression 

that is not as efficient in a “complexity analysis” sense 
as the traditional FFT.  However, the base-4 matrix 
expression (3) uses a form of “strength reduction” that 
trades off multiplications for additions.  Since 
essentially all additions are done to full precision, the 
round-off errors occur primarily in the multiplications, 
which are already reduced considerably in number 
compared to the usual DFT matrix expression Z=CX in 
(2).  For example, the total number of base-4 
multiplications performed for a 1024-point FFT is 
approximately the same as for a traditional 1024-point 
radix-2 FFT.  The actual measured precision for a 
1024-point transform, shown in Table 2, based on a 
large number of random (real and complex) input data 
sets, shows that the 16-bit base-4 FFT has a factor of  
~4 better precision than a 16-bit Altera streaming BFP 
FFT circuit and is within a factor of ~2 of that for a 20-
bit Altera FFT circuit.  In this case bit-accurate Altera 
FFT Matlab circuit models were used that are 
generated from Altera’s Megacore (v2.2.0) utility. 

 
Table 2. Measured precision for 1024-point FFTs. 

Error 
( ( ) /x x x− ) 

Altera 
16-bit 

Altera 
20-bit 

Base-4 
16-bit 

Mean 0.00038 -0.000039 0.000097 
Standard 
Deviation 0.00118 0.000217 0.000412 

Minimum 
Error -0.0292 -0.01008 -0.01556 

Maximum 
Error 0.0192 0.00426 0.0283 

 
4.3. Scaling 
 

For DSP applications in general, and wireless 
applications in particular, an important system issue is 
that of matching required DSP system throughput to 
available hardware resources, because hardware 
translates directly to cost and power. The proposed 
FFT architecture described here is fundamentally 
scalable in that it is based on a matrix representation of 
the DFT (3), where larger DFT matrices correspond 
directly to larger circuit arrays as described in Section 
3.2. One way of achieving different resource-speed 

tradeoffs to meet such throughput challenges is to 
simply change Nr and Nc keeping N the same.  For 
example, a 1024 point FFT could be computed using 
three different sets of values a shown in Table 3.  Here, 
the transform time can be varied by a factor of ~4 in 
this simple way.   

 
Table 3. Example of estimated performance for 

scaling options obtained by varying Nr and Nc , keeping 
N the same.  (The number of real multipliers is Nr.) 

Nr 
(multipliers) 

Nc Transform 
Size 

Throughput 
(cycles/DFT) 

32 32 1024 688 
16 64 1024 1576 
64 16 1024 424 

 
4.4. Power dissipation 
 

Power dissipation is a critical parameter for mobile 
wireless systems.  The base-4 architecture already 
achieves low power by 

1. Use of many small memories (one per PE), so 
that they are both low power and fast. (Only 
14% of the total circuit power dissipation comes 
from the memories.) 

2. Reuse of data flowing through registers (systolic 
processing) so that unnecessary memory reads 
and writes are avoided. 

3. Localized interconnects to minimize wiring 
overhead.  (Total interconnect dynamic power is 
only 46% of the total power for the 256-point 
circuit.)  

 
Power dissipation was 2.4W for the 256-point FFT, 

corresponding to 1611nJ/FFT.  By gating unused 
circuitry it is estimated that power dissipation could be 
further reduced by 10-15%. 

 
5. Summary 
 

The base-4 FFT architecture is intended to strike a 
balance between the flexibility of direct systolic 
designs and the computational efficiency of a pipelined 
designs.  In this way fast, regular and scalable 
implementations are possible that have the necessary 
functionality to support OFDMA applications.  In 
particular the ability to partition FFTs on to a fixed 
array size (chosen to meet system throughputs) allows 
different transform sizes to execute dynamically on the 
same hardware.  Also, non-power-of-two computations 
are possible.  A 256 point FFT circuit implementation 
example was described that provides a level 
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performance higher than other 90nm traditional 
pipelined FFTs of which we are aware.  
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