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Datasheet: Floating-Point FFT 

Features 

• FFT size: User chosen power-of-two or non-power-of-two  

• Programmability:  Easy to change functionality to meet application requirements. 

• Dynamic Range: Real and imaginary outputs are IEEE754 single precision 

• Scalability: array-based architecture means arbitrarily higher throughputs are obtained 
by increasing array size 

• Power: array interconnects are entirely local, reducing parasitic routing capacitance to 
keep power dissipation low and clock speeds high 

• Implementation FPGA: Can be used in any FPGA fabric containing embedded 
multipliers and memories. 

• Data I/O: Streaming, normal order I/O with fixed-point 2’s complement input words 

• Inverse FFT: Run time selectable input 

I/O 

• Can be either fixed-point or IEEE754 floating point 

• Output format IEEE754 

Algorithm 
The transform computation is based on a new formulation1 of the discreet Fourier transform 

(DFT), different than any other FFT implementation, which decomposes it into structured sets of 

small, matrix-based DFTs.  In particular the locality, simplicity and regularity of the processing 

core keeps interconnect delays lower than cell delays, leading to clock speeds that can 

approach the FPGA fabric limitations, e.g., "worst case" Fmax speeds determined by embedded 

elements. Short critical-path lengths with most of the delay in cells rather  than interconnects 

also lowers power dissipation.  Additionally, a novel "base-4" algorithm reduces the number of 

cycles needed per FFT to less than the transform size value N.   

Architecture 
The architecture consists of two small arrays of pipelined, fine-grained, locally connected, 

simple processing elements, each containing a complex adder, a few registers and multiplexors.  

By cycling data through this array in a programmable way any size transform can be supported 

as well as desired variations from the standard DFT calculation. 

Precision 
Unlike traditional pipelined FFTs, all additions are performed at full precision so that the round-

off errors occur only in the twiddle multiplication steps.  Consequently, the resulting precision is 

high.  In the table below are accuracy measurements for 256/1024-pt streaming floating-point 

single-precision FFTs calculated based on 500 blocks of random 24-bit real and imaginary input 

                                                
1 J. Greg Nash, "Computationally Efficient Systolic Array for Computing the Discreet Fourier Transform, 
IEEE Trans. Signal Processing, Vol. 53, No.12, December 2005, pp.4640-4641. 
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data (random phase) obtained from Matlab simulations (Intel’s model is generated by IP v17).  

The comparison reference is a double precision Matlab calculation. 

The “mean absolute error” numbers are obtained by subtracting each reference output from 

each circuit output, taking the magnitude of this and then dividing by the magnitude of the 

reference value for that output point. The “maximum absolute error” is the largest of these errors 

computed over all 500 blocks of input data. (In terms of the signal-to-noise-quantization-ratio 

both Centar designs in the table below have values >150db.) 

 Intel (256pt) 
Centar 
(256pt) 

Intel  
(1024pt) 

Centar 
(1024pt) 

Mean Absolute Error 2.4e-07 3.1e-08 2.9e-07 4.2e-08 

Std Deviation Absolute Error 2.5e-07 3.1e-08 3.4e-07 7.7e-08 

Maximum Absolute Error 2.4e-05 4.3e-06 9.1e-05 2.7e-05 

Performance and Resources 
Here example performance and resource usage data is provided on a 256/1024-point, 

streaming FFT.  The circuits were compiled using Intel’s software tools (Quartus II v17) using a 

Stratix IV EP4SE360H29C2 FPGA (40nm technology) device.  The TimeQuest static timing 

analyzer was used to determine maximum clock frequencies (Fmax) at 85C (worst case 

settings).  The same Quartus settings were used for both the Centar and Intel designs (IP v17). 

  Intel 
Centar 

v1 
Centar 

v2 
Intel Centar 

Transform Size 256 points 1024 points 

ALMs 10834 7137 7834 13559 7186 

ALUTs 16519 11050 12006 21801 11193 

Registers 15545 10431 12535 18169 10495 

M9Ks 54 62 30 87 62 

Multipliers (18-bits) 48 129 129 64 129 

Fmax (data rate, MHz) 299 456 426 285 386 

 

(The larger word lengths in the SA lead to critical paths in the much larger multipliers, which 

limits Fmax compared to the smaller fixed-point versions.) 

In the table above the adaptive logic module (ALM) is the basic unit of a Stratix IV FPGA (one 8-

input LUT, two registers plus other logic).  Comparison with Xilinx Virtex 6 devices (also 40nm) 

can be made by noting that two M9K memories are equivalent to a Xilinx BRAM and that an 

ALM is equivalent to between 1.2 and 1.8 LEs.  These numbers come from benchmark studies 

which show 1 ALM=1.2 LEs (Xilinx white paper WP284 v1.0,  December 19, 2007) and 1 

ALM=1.8 LEs  (Altera white paper), respectively. These papers actually compare Stratix III and 

Virtex 5 FPGAs; however, the Stratix IV/Virtex 6 architectures are essentially the same so the 

comparisons should still be valid. 
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Device Family Support 
Intel Device Families Supported 

• Stratix 

• Aria 

• Cyclone  

• Hardcopy 

Xilinx Device Families Supported 

• Virtex 4-7 

• Spartan 

• Artix-7 

Deliverables 

• Netlist (e.g., for Intel FPGAs a *.qxp file for synthesis or a *.vo or lib file for simulation) 

• Synthesis constraints (e.g., for Intel FPGA’s an *.sdc file)                            

• Modelsim Testbench (*.vo file for DFT circuit plus verilog testbench for control).   Matlab 
verification utilities also available. 

• Intel Stratix III FPGA board development kit testbench                                  

• Matlab behavioral bit-accurate model (p-code) 

• Documentation                                           
 

Pin-outs 
A symbol list corresponding to the pin-outs shown below are provided in the accompanying 

table.  Depending upon the desired interfaces, some signals could change. 
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Name Signal Description 

clk_IO_in clock Can be either a low frequency board oscillator 
clock output in which case circuit clock is 
derived from a PLL or actual data I/O clock 

system_rst_in control Resets circuit; active high 

FFT_en control Registers FFT_inv signal; active high 

FFT_inv control High->forward; low->inverse 

data_in_r/i 24-bit signed Real and imaginary inputs (can be IEEE754) 

output_en control High during data output 

data_out_r/i 32-bit signed Real and imaginary outputs IEEE754 

 

Timing Diagram 
A variety of timing possibilities exist depending upon the desired interface.  That shown here is 

applicable to a streaming, normal order input/output scheme. 

 

At any time after system_rst_in goes low, FFT_ en is used to latch the direction of the transform 

(FFT_inv=0/1 for forward/inverse).  Following this, the circuit expects to see continuous data 

appearing on the 8th subsequent cycle.  Valid data out occurs when output_valid (output_en) 

goes high.  For streaming operation output is continuous from this point on. 
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