

 1

Datasheet: Floating-Point FFT

Features

• FFT size: User chosen power-of-two or non-power-of-two

• Programmability: Easy to change functionality to meet application requirements.

• Dynamic Range: Real and imaginary outputs are IEEE754 single precision

• Scalability: array-based architecture means arbitrarily higher throughputs are obtained
by increasing array size

• Power: array interconnects are entirely local, reducing parasitic routing capacitance to
keep power dissipation low and clock speeds high

• Implementation FPGA: Can be used in any FPGA fabric containing embedded
multipliers and memories.

• Data I/O: Streaming, normal order I/O with fixed-point 2’s complement input words

• Inverse FFT: Run time selectable input

I/O

• Can be either fixed-point or IEEE754 floating point

• Output format IEEE754

Algorithm
The transform computation is based on a new formulation1 of the discreet Fourier transform

(DFT), different than any other FFT implementation, which decomposes it into structured sets of

small, matrix-based DFTs. In particular the locality, simplicity and regularity of the processing

core keeps interconnect delays lower than cell delays, leading to clock speeds that can

approach the FPGA fabric limitations, e.g., "worst case" Fmax speeds determined by embedded

elements. Short critical-path lengths with most of the delay in cells rather than interconnects

also lowers power dissipation. Additionally, a novel "base-4" algorithm reduces the number of

cycles needed per FFT to less than the transform size value N.

Architecture
The architecture consists of two small arrays of pipelined, fine-grained, locally connected,

simple processing elements, each containing a complex adder, a few registers and multiplexors.

By cycling data through this array in a programmable way any size transform can be supported

as well as desired variations from the standard DFT calculation.

Precision
Unlike traditional pipelined FFTs, all additions are performed at full precision so that the round-

off errors occur only in the twiddle multiplication steps. Consequently, the resulting precision is

high. In the table below are accuracy measurements for 256/1024-pt streaming floating-point

single-precision FFTs calculated based on 500 blocks of random 24-bit real and imaginary input

1 J. Greg Nash, "Computationally Efficient Systolic Array for Computing the Discreet Fourier Transform,
IEEE Trans. Signal Processing, Vol. 53, No.12, December 2005, pp.4640-4641.

 2

data (random phase) obtained from Matlab simulations (Intel’s model is generated by IP v17).

The comparison reference is a double precision Matlab calculation.

The “mean absolute error” numbers are obtained by subtracting each reference output from

each circuit output, taking the magnitude of this and then dividing by the magnitude of the

reference value for that output point. The “maximum absolute error” is the largest of these errors

computed over all 500 blocks of input data. (In terms of the signal-to-noise-quantization-ratio

both Centar designs in the table below have values >150db.)

 Intel (256pt)
Centar
(256pt)

Intel
(1024pt)

Centar
(1024pt)

Mean Absolute Error 2.4e-07 3.1e-08 2.9e-07 4.2e-08

Std Deviation Absolute Error 2.5e-07 3.1e-08 3.4e-07 7.7e-08

Maximum Absolute Error 2.4e-05 4.3e-06 9.1e-05 2.7e-05

Performance and Resources
Here example performance and resource usage data is provided on a 256/1024-point,

streaming FFT. The circuits were compiled using Intel’s software tools (Quartus II v17) using a

Stratix IV EP4SE360H29C2 FPGA (40nm technology) device. The TimeQuest static timing

analyzer was used to determine maximum clock frequencies (Fmax) at 85C (worst case

settings). The same Quartus settings were used for both the Centar and Intel designs (IP v17).

 Intel
Centar

v1
Centar

v2
Intel Centar

Transform Size 256 points 1024 points

ALMs 10834 7137 7834 13559 7186

ALUTs 16519 11050 12006 21801 11193

Registers 15545 10431 12535 18169 10495

M9Ks 54 62 30 87 62

Multipliers (18-bits) 48 129 129 64 129

Fmax (data rate, MHz) 299 456 426 285 386

(The larger word lengths in the SA lead to critical paths in the much larger multipliers, which

limits Fmax compared to the smaller fixed-point versions.)

In the table above the adaptive logic module (ALM) is the basic unit of a Stratix IV FPGA (one 8-

input LUT, two registers plus other logic). Comparison with Xilinx Virtex 6 devices (also 40nm)

can be made by noting that two M9K memories are equivalent to a Xilinx BRAM and that an

ALM is equivalent to between 1.2 and 1.8 LEs. These numbers come from benchmark studies

which show 1 ALM=1.2 LEs (Xilinx white paper WP284 v1.0, December 19, 2007) and 1

ALM=1.8 LEs (Altera white paper), respectively. These papers actually compare Stratix III and

Virtex 5 FPGAs; however, the Stratix IV/Virtex 6 architectures are essentially the same so the

comparisons should still be valid.

 3

Device Family Support
Intel Device Families Supported

• Stratix

• Aria

• Cyclone

• Hardcopy

Xilinx Device Families Supported

• Virtex 4-7

• Spartan

• Artix-7

Deliverables

• Netlist (e.g., for Intel FPGAs a *.qxp file for synthesis or a *.vo or lib file for simulation)

• Synthesis constraints (e.g., for Intel FPGA’s an *.sdc file)

• Modelsim Testbench (*.vo file for DFT circuit plus verilog testbench for control). Matlab
verification utilities also available.

• Intel Stratix III FPGA board development kit testbench

• Matlab behavioral bit-accurate model (p-code)

• Documentation

Pin-outs
A symbol list corresponding to the pin-outs shown below are provided in the accompanying

table. Depending upon the desired interfaces, some signals could change.

 4

Name Signal Description

clk_IO_in clock Can be either a low frequency board oscillator
clock output in which case circuit clock is
derived from a PLL or actual data I/O clock

system_rst_in control Resets circuit; active high

FFT_en control Registers FFT_inv signal; active high

FFT_inv control High->forward; low->inverse

data_in_r/i 24-bit signed Real and imaginary inputs (can be IEEE754)

output_en control High during data output

data_out_r/i 32-bit signed Real and imaginary outputs IEEE754

Timing Diagram
A variety of timing possibilities exist depending upon the desired interface. That shown here is

applicable to a streaming, normal order input/output scheme.

At any time after system_rst_in goes low, FFT_ en is used to latch the direction of the transform

(FFT_inv=0/1 for forward/inverse). Following this, the circuit expects to see continuous data

appearing on the 8th subsequent cycle. Valid data out occurs when output_valid (output_en)

goes high. For streaming operation output is continuous from this point on.

 8 1clk_IO_in

system_rst_in

FFT_size_en

FFT_size[2..0]

FFT_inv

data_in_r[n-1..0]

data_in_i[n-1..0]

output_valid

data_out_i[n-1..0]

data_out_r[n-1..0]

exp_out[m..0]

