
 

  
      1 

 
  

Datasheet: Fixed-Size FFT 

Features 

• High Throughput: obtained from high clock rates (>500MHz using 65nm technology) 
and novel algorithms 

• FFT size: User chosen power-of-two or non-power-of-two  

• Programmability:  Finite-state-machine control circuitry for matching circuit/application 
functionality and I/O interface. 

• Dynamic Range: combined block floating point and floating point architecture means 
smaller word lengths can be used for post-processing operations such as equalization 
(~6db/bit). 

• Scalability: array based architecture means arbitrarily higher throughputs are obtained 
by increasing array size 

• Power: array interconnects are entirely local, reducing parasitic routing capacitance to 
keep power dissipation low and clock speeds high 

• Implementation FPGA: Centar's DFT circuit can be used in any FPGA fabric containing 
embedded multipliers and memories. 

• Data I/O: Streaming, normal order I/O with fixed-point 2’s complement input words 

Options 

• Fixed point word input lengths (2’s complement) 

• Output format 
o Fixed-point 
o Block floating-point 
o Floating-point 

Algorithm 
The transform computation is based on a new formulation1 of the discreet Fourier transform 

(DFT), different than any other FFT implementation, which decomposes it into structured sets of 

small, matrix-based DFTs.  In particular the locality, simplicity and regularity of the processing 

core keeps interconnect delays lower than cell delays, leading to clock speeds that can 

approach the FPGA fabric limitations, e.g., "worst case" Fmax speeds >500MHz in 65nm FPGA 

technology. Short critical-path lengths with less delay in cells than interconnects also lower 

power dissipation.  Additionally, a novel "base-4" algorithm reduces the number of cycles 

needed per FFT to less than the transform size value N.   Finally, it includes a low overhead 

hybrid floating-point feature that increases dynamic range for a given fixed-point word size. 

Architecture 
The architecture consists of two small arrays of pipelined, fine-grained, locally connected, 

simple processing elements, each containing a complex adder, a few registers and multiplexors.  

By cycling data through this array in a programmable way any size transform can be supported 

as well as desired variations from the standard DFT calculation. 

                                                
1 J. Greg Nash, "Computationally Efficient Systolic Array for Computing the Discreet Fourier Transform, 
IEEE Trans. Signal Processing, Vol. 53, No.12, December 2005, pp.4640-4641. 



 

  
      2 

 
  

Scaling 
Word growth during computation is handled automatically using a combination of block floating 

point (BFP) and floating point (FP) features that provide a much higher dynamic range than 

other fixed-point FFT circuits with the same input word length.  A measure of dynamic range in 

in decibels is the ratio of the magnitude of the sum of the two large FFT coefficients and the 

largest round-off noise value for "single tone" real inputs (random frequency and phase): 

 Fixed-Size Transform Size Examples 

 128 256 512 1024 2048 

Mean 103 105 103 104 105 

Std. Dev. 2.7 2.3 4.2 2.2 2.0 

Maximum 117 111 115 111 111 

Minimum 92 95 96 96 99 

Dynamic Range (db) (2000 FFT blocks) 

 

Typically, circuits show almost 6db/bit of dynamic range as defined above. 

Signal-to-Quantization-Noise-Ratio (SQNR) 
Unlike traditional pipelined FFTs, all additions are performed at full precision so that the round-

off errors occur only in the twiddle multiplication multiplication steps.  Consequently, the SQNR 

is much higher than found in other FFT architectures for a given input bit length.  

 Fixed-Size Transform Size Examples 

 128 256 512 1024 2048 

Mean 87 87 82 83 81 

Std. Dev. 1.6 1.4 0.83 0.84 0.62 

Maximum 91 90 85 85 83 

Minimum 83 83 79 80 79 

SQNR (db) (2000 FFT blocks) 

Performance and Resources 
Here performance and resource usage data is provided on a 256 and 1024-point, streaming 

variable FFT examples.  The circuit was compiled using Intel’s software tools (Quartus II) and a 

Stratix III EP3SE50F484C2 FPGA.  The TimeQuest static timing analyzer was used to 

determine maximum clock frequencies (Fmax) at 1.1V and 85C (worst case settings). 

 

 

 

 



 

  
      3 

 
  

 
Intel 

Centar 
v1 

Centar 
v2 

Intel Centar 

 
20 bits 16 bits 16 bits 20 bits 16 bits 

Transform Size 256pts 1024pts 

ALMs 4414 4024 5063 4770 4357 

Memory (Kbits) 49 40.6 31.6 195 145 

M9Ks 38 31 15 38 31 

Multipliers (18-bits) 24 33 33 24 33 

Fmax (data rate,MHz) 375 533 566 376 533 

SQNR 87.8 86.7 86.7 81.3 82.9 

µJ/FFT 1.29 1.12   6.36 4.31 

 

In the table above the adaptive logic module (ALM) is the basic unit of a Stratix III FPGA (one 8-

input LUT, two registers plus other logic).  Comparison with Xilinx Virtex 5 devices can be made 

by noting that two M9K memories are equivalent to a Xilinx BRAM and that an ALM is 

equivalent to between 1.2 and 1.8 LEs,  since benchmark studies show 1 ALM=1.2 LEs (Xilinx 

white paper WP284 v1.0,  December 19, 2007) and 1 ALM=1.8 LEs  (Intel white paper), 

respectively. 

The memory size (Kbits) indicates the total used memory in the M9Ks and is a measure of how 

fully utilized they are. (Considerable memory savings are possible if streaming operation is not 

necessary and data can be provided in out-of-order sequence.)  The 256-pt "v2" circuit uses 

"distributed memory" (MLABs in Intel FPGAs) insteady of the embedded memories, as 

sometimes this leads to more efficient resource usage. 

Power estimates (microjoules/FFT) were obtained from the PowerPlay analyzer tool using value 

change dump (vcd) files from Modelsim simulations to obtain accurate toggle rates. 

Operation at 500MHz has been verified using an Intel Stratix III development kit, which included 

an EP3SL150F1152C2 FPGA.  (The Fmax values were based on the best of ~20 seeds for 

each circuit). 

Device Family Support 
Intel Device Families Supported 

• Stratix 

• Aria 

• Cyclone  

• Hardcopy 

Xilinx Device Families Supported 

• Virtex 4-7 

• Spartan 

• Artix-7 



 

  
      4 

 
  

 

Deliverables 

• Netlist (e.g., for Intel FPGAs a *.qxp file for synthesis or a *.vo file for simulation) 

• Synthesis constraints (e.g., for Intel FPGA’s an *.sdc file)                            

• Modelsim Testbench (*.vo file for DFT circuit plus verilog testbench for control).   Matlab 
verification utilities also available. 

• Intel Stratix III FPGA board development kit testbench                                  

• Matlab behavioral bit-accurate model (p-code) 

• Documentation                                           
 

Pin-outs 
A symbol list corresponding to the pin-outs shown below are provided in the accompaning table.  

These apply to the "nominal variable" FFT circuit. Depending upon the desired interfaces, some 

signals could change. 

 

 

 

 

Name Signal Description 

clk_IO_in clock Can be either a low frequency board oscillator 
clock output in which case circuit clock is 
derived from a PLL or actual data I/O clock 

system_rst_in control Resets circuit; active high 

FFT_en control Registers FFT_inv signal; active high 

FFT_inv control High->forward; low->inverse 

data_in_r/i n-bit signed Real and imaginary inputs 

output_valid control High during data output 

exp_out m-bit unsigned Exponents (one per real/imag data pair) 

data_out_r/i n-bit signed Real and imaginary outputs 

 



 

  
      5 

 
  

Timing Diagram 
A variety of timing possibilities exist depending upon the desired interface.  That shown here is 

applicable to a streaming, normal order input/output scheme. 

 

At any time after system_rst_in goes low, FFT_ en is used to latch the direction of the transform 

(FFT_inv=0/1 for forward/inverse).  Following this, the circuit expects to see continuous data 

appearing on the 8th subsequent cycle.  Valid data out occurs when output_valid goes high.  

For streaming operation output is continuous from this point on. 

 

 8 1clk_IO_in

system_rst_in

FFT_size_en

FFT_size[2..0]

FFT_inv

data_in_r[n-1..0]

data_in_i[n-1..0]

output_valid

data_out_i[n-1..0]

data_out_r[n-1..0]

exp_out[m..0]


